326 research outputs found

    Clinical Utility of Acute-phase Reactants in Medicine

    Get PDF
    Acute-phase response is the sum of the systemic and metabolic changes occurred by release of acute-phase proteins in response to an inflammatory stimulus. The most important ones of these acute-phase reactants are erythrocyte sedimentation rate, C-reactive protein, fibrinogen, procalcitonin and ferritin. The most widely used ones are ESR and CRP while fibrinogen and ferritin are less commonly used. The other acute-phase reactants have limited role in routine clinical use. ESR and C-reactive protein have traditionally been used as markers for inflammation in infectious and noninfectious conditions. These markers have significant role in early diagnosis, in differentiating infectious from noninfectious causes, as a prognostic marker and in antibiotic guidance strategies. Procalcitonin and CRP are most commonly used in this regard. Although CRP is more specific than ESR, yet because of the high cost and limited availability, it has restricted clinical usage in developing countries. Not all acute-phase reactants behave the same way when stimulated; the concentration of some increases while others decrease in plasma

    Transcriptional control of Arabidopsis seed development

    Get PDF
    Seed development is a complex process that proceeds through sequences of events regulated by the interplay of various genes, prominent among them being the transcription factors (TFs). The members of WOX, HD-ZIP III, ARF, and CUC families have a preferential role in embryonic patterning. While WOX TFs are required for initiating body axis, HD-ZIP III TFs and CUCs establish bilateral symmetry and SAM. And ARF5 performs a major role during embryonic root, ground tissue, and vasculature development. TFs such as LEC1, ABI3, FUS3, and LEC2 (LAFL) are considered the master regulators of seed maturation. Furthermore, several new TFs involved in seed storage reserves and dormancy have been identified in the last few years. Their association with those master regulators has been established in the model plant Arabidopsis. Also, using chromatin immunoprecipitation (ChIP) assay coupled with transcriptomics, genome-wide target genes of these master regulators have recently been proposed. Many seed-specific genes, including those encoding oleosins and albumins, have appeared as the direct target of LAFL. Also, several other TFs act downstream of LAFL TFs and perform their function during maturation. In this review, the function of different TFs in different phases of early embryogenesis and maturation is discussed in detail, including information about their genetic and molecular interactors and target genes. Such knowledge can further be leveraged to understand and manipulate the regulatory mechanisms involved in seed development. In addition, the genomics approaches and their utilization to identify TFs aiming to study embryo development are discussed.Seed development is a complex process that proceeds through sequences of events regulated by the interplay of various genes, prominent among them being the transcription factors (TFs). The members of WOX, HD-ZIP III, ARF, and CUC families have a preferential role in embryonic patterning. While WOX TFs are required for initiating body axis, HD-ZIP III TFs and CUCs establish bilateral symmetry and SAM. And ARF5 performs a major role during embryonic root, ground tissue, and vasculature development. TFs such as LEC1, ABI3, FUS3, and LEC2 (LAFL) are considered the master regulators of seed maturation. Furthermore, several new TFs involved in seed storage reserves and dormancy have been identified in the last few years. Their association with those master regulators has been established in the model plant Arabidopsis. Also, using chromatin immunoprecipitation (ChIP) assay coupled with transcriptomics, genome-wide target genes of these master regulators have recently been proposed. Many seed-specific genes, including those encoding oleosins and albumins, have appeared as the direct target of LAFL. Also, several other TFs act downstream of LAFL TFs and perform their function during maturation. In this review, the function of different TFs in different phases of early embryogenesis and maturation is discussed in detail, including information about their genetic and molecular interactors and target genes. Such knowledge can further be leveraged to understand and manipulate the regulatory mechanisms involved in seed development. In addition, the genomics approaches and their utilization to identify TFs aiming to study embryo development are discussed

    Transcriptome Analysis in Chickpea (Cicer arietinum L.): Applications in Study of Gene Expression, Non-Coding RNA Prediction, and Molecular Marker Development

    Get PDF
    Extensive analyses of transcriptome have been carried out in chickpea, which is the third most important legume valued as a source of dietary protein and micronutrients. Over the last two decades, several laboratories have used a wide range of techniques encompassing expressed sequence tag (EST) analysis, serial analysis of gene expression (SAGE), microarray and next-generation sequencing (NGS) technologies for analysing the chickpea transcriptomes. However, chickpea transcriptome analysis witnessed significant progress with the advent of the NGS platforms. Gene expression analyses using NGS platforms were carried out in the vegetative and reproductive tissues such as shoot, root, mature leaf, flower bud, young pod, seed and nodule by various groups which resulted in identification of several tissue-specific transcripts. Some laboratories have utilized transcriptomics to explore the response of chickpea to abiotic and biotic stresses such as drought, salinity, heat, cold, Fusarium oxysporum and Ascochyta rabiei differentially expressed genes and also established crosstalk between biotic and abiotic stress responses. Transcriptome analysis has been utilized extensively to identify non-coding RNAs such as miRNAs and long intergenic non-coding (LINC) RNAs. Transcriptome analysis has facilitated the development of molecular markers such as simple sequence repeats (SSRs), single-nucleotide polymorphisms (SNPs) and potential intron polymorphisms (PIPs) that are being used to expedite the chickpea breeding programmes. The available chickpea transcriptomes will continue to serve as the foundation for devising strategies for chickpea improvement

    Concise Review: Cell Therapy for Critical Limb Ischemia: An Integrated Review of Preclinical and Clinical Studies

    Get PDF
    Critical limb ischemia (CLI), the most severe form of peripheral artery disease, is characterized by pain at rest and non-healing ulcers in the lower extremities. For patients with CLI, where the extent of atherosclerotic artery occlusion is too severe for surgical bypass or percutaneous interventions, limb amputation remains the only treatment option. Thus, cell-based therapy to restore perfusion and promote wound healing in patients with CLI is under intense investigation. Despite promising preclinical studies in animal models, transplantation of bone marrow (BM)-derived cell populations in patients with CLI has shown limited benefit preventing limb amputation. Early trials injected heterogenous mononuclear cells containing a low frequency of cells with pro-vascular regenerative functions. Most trials transferred autologous cells damaged by chronic disease that demonstrated poor survival in the ischemic environment and impaired function conferred by atherosclerotic or diabetic co-morbidities. Finally, recent preclinical studies suggest optimized blood vessel formation may require paracrine and/or structural contributions from multiple progenitor cell lineages, angiocrine-secretory myeloid cells derived from hematopoietic progenitor cells, tubule-forming endothelial cells generated by circulating or vessel-resident endothelial precursors, and vessel-stabilizing perivascular cells derived from mesenchymal stem cells. Understanding how stem cells co-ordinate the myriad of cells and signals required for stable revascularization remains the key to translating the potential of stem cells into curative therapies for CLI. Thus, combination delivery of multiple cell types within supportive bioengineered matricies may represent a new direction to improve cell therapy strategies for CLI. Stem Cells 2018;36:161–171
    • …
    corecore